Probability Of A Straight In Texas Holdem
Texas Hold’em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold’em is the version played most often at casinos and is the most popular among the “community cards” variants of poker. It is also the variant played at the World Series of Poker. On the poker hand rankings chart, a Straight weighs in at fifth position. Directly above a straight is a Flush poker hand. The best flush you can form is an Ace-high Flush. In a standard game of Texas Hold’em poker, a Straight is still a great hand to form. There are several hands that rank beneath a Straight, notably Three of a Kind. Texas Hold'em Poker Runner-Runner (Backdoor) Odds. When it takes two perfect cards on both the turn and the river to covert an average or weak hand after the flop to a strong one, this should normally qualify as a 'long shot'. Also, 'strong' hands are considered here to be straights and better.
“I couldn’t fold, I had an up & down straight draw on the flop!” An up and down straight draw, or an open ended straight draw means that you have eight cards that can complete your straight. You’ll complete your straight 31.5% of the time on the river – and what a sweet feeling that is! Legalizing Texas holdem and other forms of poker in many places, including online. The answer to this question boils down to the mathematics behind the game. If the math shows one player can win more often than another based on the mathematical and statistical truths about Texas.
Introduction
This page examines the probabilities of each final hand of an arbitrary player, referred to as player two, given the poker value of the hand of the other player, referred to as player one. Combinations shown are out of a possible combin(52,5)×combin(47,2)×combin(45,2) = 2,781,381,002,400. The primary reason for this page was to assist with bad beat probabilities in a two-player game, for example the Bad Beat Bonus in Ultimate Texas Hold 'Em.
For example, if you wish to know the probability of a particular player getting a full house and losing to a four of a kind, we can see from table 7 that there are 966,835,584 such combinations. The same table shows us that given that player one has a full house, the probability of losing to a four of a kind is 0.013390. To get the probability before any cards are dealt, divide 966,835,584 by the total possible combinations of 2,781,381,002,400, which yields 0.0002403.
Table 1 shows the number of combinations for each hand of a second player, given that the first player has less than a pair.
Table 1 — First Player has Less than Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 164,934,908,760 | 0.340569 |
Pair | 228,994,769,160 | 0.472845 |
Two pair | 43,652,558,880 | 0.090137 |
Three of a kind | 7,303,757,580 | 0.015081 |
Straight | 26,248,866,180 | 0.054201 |
Flush | 13,060,678,788 | 0.026969 |
Full house | - | 0.000000 |
Four of a kind | - | 0.000000 |
Straight flush | 85,751,460 | 0.000177 |
Royal flush | 10,532,592 | 0.000022 |
Total | 484,291,823,400 | 1.000000 |
Table 2 shows the number of combinations for each hand of a second player, given that the first player has a pair.
Table 2 — First Player has a Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 228,994,769,160 | 0.187874 |
Pair | 574,484,133,960 | 0.471324 |
Two pair | 270,127,833,552 | 0.221621 |
Three of a kind | 47,736,401,832 | 0.039164 |
Straight | 50,797,137,096 | 0.041676 |
Flush | 30,076,271,352 | 0.024675 |
Full house | 15,829,506,000 | 0.012987 |
Four of a kind | 586,278,000 | 0.000481 |
Straight flush | 214,250,184 | 0.000176 |
Royal flush | 25,380,864 | 0.000021 |
Total | 1,218,871,962,000 | 1.000000 |
Table 3 shows the number of combinations for each hand of a second player, given that the first player has a two pair.
Table 3 — First Player has a Two Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 43,652,558,880 | 0.066798 |
Pair | 270,127,833,552 | 0.413355 |
Two pair | 246,286,292,328 | 0.376872 |
Three of a kind | 31,155,189,408 | 0.047674 |
Straight | 18,549,991,152 | 0.028386 |
Flush | 14,200,694,712 | 0.021730 |
Full house | 28,751,944,680 | 0.043997 |
Four of a kind | 653,378,400 | 0.001000 |
Straight flush | 109,829,304 | 0.000168 |
Royal flush | 12,673,584 | 0.000019 |
Total | 653,500,386,000 | 1.000000 |
Table 4 shows the number of combinations for each hand of a second player, given that the first player has a three of a kind.
Table 4 — First Player has a Three of a Kind
Event | Pays | Probability |
---|---|---|
Less than pair | 7,303,757,580 | 0.054369 |
Pair | 47,736,401,832 | 0.355348 |
Two pair | 31,155,189,408 | 0.231918 |
Three of a kind | 27,586,332,384 | 0.205352 |
Straight | 3,310,535,196 | 0.024643 |
Flush | 2,606,403,900 | 0.019402 |
Full house | 12,910,316,760 | 0.096104 |
Four of a kind | 1,705,867,680 | 0.012698 |
Straight flush | 19,970,844 | 0.000149 |
Royal flush | 2,304,216 | 0.000017 |
Total | 134,337,079,800 | 1.000000 |
Table 5 shows the number of combinations for each hand of a second player, given that the first player has a straight.
Table 5 — First Player has a Straight
Event | Pays | Probability |
---|---|---|
Less than pair | 26,248,866,180 | 0.204299 |
Pair | 50,797,137,096 | 0.395362 |
Two pair | 18,549,991,152 | 0.144377 |
Three of a kind | 3,310,535,196 | 0.025766 |
Straight | 25,219,094,136 | 0.196284 |
Flush | 3,229,836,828 | 0.025138 |
Full house | 975,510,000 | 0.007593 |
Four of a kind | 43,198,800 | 0.000336 |
Straight flush | 98,961,348 | 0.000770 |
Royal flush | 9,485,064 | 0.000074 |
Total | 128,482,615,800 | 1.000000 |
Table 6 shows the number of combinations for each hand of a second player, given that the first player has a flush.
Table 6 — First Player has a Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 13,060,678,788 | 0.155206 |
Pair | 30,076,271,352 | 0.357410 |
Two pair | 14,200,694,712 | 0.168754 |
Three of a kind | 2,606,403,900 | 0.030973 |
Straight | 3,229,836,828 | 0.038382 |
Flush | 19,608,838,592 | 0.233021 |
Full house | 1,102,206,960 | 0.013098 |
Four of a kind | 50,221,200 | 0.000597 |
Straight flush | 191,762,164 | 0.002279 |
Royal flush | 23,604,264 | 0.000281 |
Total | 84,150,518,760 | 1.000000 |
Table 7 shows the number of combinations for each hand of a second player, given that the first player has a full house.
Table 7 — First Player has a Full House
Event | Pays | Probability |
---|---|---|
Less than pair | - | 0.000000 |
Pair | 15,829,506,000 | 0.219222 |
Two pair | 28,751,944,680 | 0.398185 |
Three of a kind | 12,910,316,760 | 0.178795 |
Straight | 975,510,000 | 0.013510 |
Flush | 1,102,206,960 | 0.015264 |
Full house | 11,661,414,336 | 0.161499 |
Four of a kind | 966,835,584 | 0.013390 |
Straight flush | 8,767,440 | 0.000121 |
Royal flush | 993,600 | 0.000014 |
Total | 72,207,495,360 | 1.000000 |
Table 8 shows the number of combinations for each hand of a second player, given that the first player has a four of a kind.
Table 8 — First Player has a Four of a Kind
Event | Pays | Probability |
---|---|---|
Less than pair | - | 0.000000 |
Pair | 586,278,000 | 0.125418 |
Two pair | 653,378,400 | 0.139772 |
Three of a kind | 1,705,867,680 | 0.364923 |
Straight | 43,198,800 | 0.009241 |
Flush | 50,221,200 | 0.010743 |
Full house | 966,835,584 | 0.206828 |
Four of a kind | 668,375,136 | 0.142980 |
Straight flush | 390,960 | 0.000084 |
Royal flush | 44,160 | 0.000009 |
Total | 4,674,589,920 | 1.000000 |
Table 9 shows the number of combinations for each hand of a second player, given that the first player has a straight flush.
Table 9 — First Player has a Straight Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 85,751,460 | 0.110699 |
Pair | 214,250,184 | 0.276582 |
Two pair | 109,829,304 | 0.141782 |
Three of a kind | 19,970,844 | 0.025781 |
Straight | 98,961,348 | 0.127752 |
Flush | 191,762,164 | 0.247552 |
Full house | 8,767,440 | 0.011318 |
Four of a kind | 390,960 | 0.000505 |
Straight flush | 44,354,840 | 0.057259 |
Royal flush | 596,856 | 0.000770 |
Total | 774,635,400 | 1.000000 |
Table 10 shows the number of combinations for each hand of a second player, given that the first player has a royal flush.
Table 10 — First Player has a Royal Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 10,532,592 | 0.117164 |
Pair | 25,380,864 | 0.282336 |
Two pair | 12,673,584 | 0.140981 |
Three of a kind | 2,304,216 | 0.025632 |
Straight | 9,485,064 | 0.105512 |
Flush | 23,604,264 | 0.262573 |
Full house | 993,600 | 0.011053 |
Four of a kind | 44,160 | 0.000491 |
Straight flush | 596,856 | 0.006639 |
Royal flush | 4,280,760 | 0.047619 |
Total | 89,895,960 | 1.000000 |
The following table shows the number of combinations for each hand of player 1 by the winner of the hand.
Table 11 — Winning Player by Hand of Player 1 — Combinations
Player 1 | Win | Tie | Loss | |
---|---|---|---|---|
Less than pair | 76,626,795,600 | 11,681,317,560 | 395,983,710,240 | 484,291,823,400 |
Pair | 496,857,988,764 | 38,757,694,752 | 683,256,278,484 | 1,218,871,962,000 |
Two pair | 419,896,266,012 | 34,054,545,168 | 199,549,574,820 | 653,500,386,000 |
Three of a kind | 97,664,829,948 | 4,647,370,128 | 32,024,879,724 | 134,337,079,800 |
Straight | 103,685,076,072 | 15,662,001,240 | 9,135,538,488 | 128,482,615,800 |
Flush | 71,523,195,288 | 2,910,219,176 | 9,717,104,296 | 84,150,518,760 |
Full house | 62,810,500,464 | 5,179,382,208 | 4,217,612,688 | 72,207,495,360 |
Four of a kind | 4,240,864,800 | 198,204,864 | 235,520,256 | 4,674,589,920 |
Straight flush | 734,237,144 | 35,247,960 | 5,150,296 | 774,635,400 |
Royal flush | 85,615,200 | 4,280,760 | - | 89,895,960 |
Total | 1,334,125,369,292 | 113,130,263,816 | 1,334,125,369,292 | 2,781,381,002,400 |
Texas Holdem Probability Equation
The following table shows the probability for each hand of player 1 by the winner of the hand. The bottom row shows that each player has a 47.97% chance of winning and a 4.07% chance of a tie.
Table 12 — Winning Player by Hand of Player 1 — Probabilities
Player 1 Hand | Player 1 | Tie | Player 2 | Total |
---|---|---|---|---|
Less than pair | 0.027550 | 0.004200 | 0.142369 | 0.174119 |
Pair | 0.178637 | 0.013935 | 0.245654 | 0.438225 |
Two pair | 0.150967 | 0.012244 | 0.071745 | 0.234955 |
Three of a kind | 0.035114 | 0.001671 | 0.011514 | 0.048299 |
Straight | 0.037278 | 0.005631 | 0.003285 | 0.046194 |
Flush | 0.025715 | 0.001046 | 0.003494 | 0.030255 |
Full house | 0.022582 | 0.001862 | 0.001516 | 0.025961 |
Four of a kind | 0.001525 | 0.000071 | 0.000085 | 0.001681 |
Straight flush | 0.000264 | 0.000013 | 0.000002 | 0.000279 |
Royal flush | 0.000031 | 0.000002 | 0.000000 | 0.000032 |
Total | 0.479663 | 0.040674 | 0.479663 | 1.000000 |
Texas Holdem Probability Calculator
Written by: Michael Shackleford